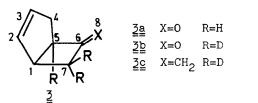
ENTARTETE UMLAGERUNG EINES BICYCLISCHEN METHYLENCYCLOBUTANS: 6-METHYLEN-BICYCLO[3.2.0]HEPTEN-(2)

MECHANISMUS SEINER ISOMERISIERUNG ZU 5-METHYLEN-BICYCLO[2.2.1]HEPTEN-(2)

Dieter Hasselmann


Abteilung für Chemie der Ruhr-Universitat Bochum

(Received in Germany 22 June 1973, received in UK for publication 10 August 1973)

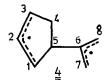
Thermische Umlagerungen gespannter Methylen-cycloalkane sind experimentell und theoretisch intensiv untersucht worden $^{1)}$. Kürzlich berichteten wir über die Isomerisierung von 6-Methylen-bicyclo[3.2.0]hepten-(2), $\underline{1}$, zu 5-Methylen-bicyclo[2.2.1]hepten-(2), $\underline{2}$, und die Automerisierung von $\underline{2}$, die erst bei wesentlich höherer Temperatur erfolgt $^{2)}$. Diese Arbeit befaßt sich mit dem Mechanismus der Umlagerung $\underline{1} \rightarrow \underline{2}$ und der degenerierten Methylencyclobutan-Umlagerung von $\underline{1}$.

Die Thermolyse von 1, das spezifisch am Kohlenstoff C_7 oder C_8 markiert ist, sollte sowohl einen Einblick in das strukturelle Schicksal des wandernden Zentrums C_7 bei der Isomerisierung $1 \rightarrow 2$ als auch einen Nachweis der moglichen degenerierten Umlagerung $1 \rightarrow 2$ gestatten. Ausgangspunkt der Synthese 3) von $1 \rightarrow 2$ und $1 \rightarrow 2$ war Bicyclo[3.2.0]hept-2-en-6-on, $1 \rightarrow 2$ alkalischer Austausch von $1 \rightarrow 2$ in $1 \rightarrow 2$ of $1 \rightarrow 2$ des durch Wittig-Olefinierung ohne Deuterium-"scrambling" in $1 \rightarrow 2$ uberführt wurde $1 \rightarrow 2$ be spezifische Markierung von $1 \rightarrow 2$ (im Folgenden setzen wir $1 \rightarrow 2$ des $1 \rightarrow 2$ des sich eindeutig aus seinem $1 \rightarrow 2$ henden $1 \rightarrow 2$ des $1 \rightarrow$

methylenjodid $^{8)}$ und Magnesiumamalgam $^{9)}$ fuhrte zu $\underline{1}\underline{b}$. Abwesenheit der c_{8} -

Protonensignale und Vereinfachung der Multiplizität der C $_7$ - und C $_5$ -H Absorptionen im 1 H-NMR-Spektrum bewies die spezifische Markierung in $\underline{1}\underline{b}$

Bel Temperaturen um 200°C lagert sich $\underline{1}\underline{a}$ in der Gasphase zu $\underline{1}\underline{b}$ und einem Gemisch von $\underline{2}\underline{a}$ und $\underline{2}\underline{b}$ um $^{10)11}$). Die Umlagerung $\underline{1}\underline{a} \rightarrow \underline{1}\underline{b}$ konnte an der Abnahme der C_8 -Protonensignale im $^{1}\text{H-NMR-Spektrum}$ von $\underline{1}$ erkannt werden 12). Die degenerierte Methylencyclobutan-Umlagerung von $\underline{1}$ verfolgten wir quantitativ im Temperaturbereich von 195.2°C bis 226.3°C ausgehend von $\underline{1}\underline{b}$ an der Zunahme der C_8 -Protonensignale 7b) bis 15 % Umlagerung 13). Die Kinetik ergab für eine reversible Reaktion 1. Ordnung 14) eine Arrhenius-Gleichung 15) mit den in Tabelle 1 angeführten Werten.


Tabelle 1 Kinetische Parameter thermischer Umlagerungen von 1

Umlagerung	lg A	Ea [kcal·mol ⁻¹]	ΔH [‡] [kcal·mol ⁻¹]	ΔS ‡ [cal/grad.mol]
1b→1a	13.4 [±] 0.2	40.9 [±] 0.4	39.9±0.4	+1.8 [±] 0.9
1a→2a+2b	13.8 [±] 0.1	39.9 [±] 0.1	39.0±0.1	+3.7 [±] 0.2
1→2 ²)	13.7 [±] 0.2	39.6 [±] 0.1	38.6±0.1	+3.3 [±] 0.3

Sowohl 2a als auch 2b, die sich unter den Thermolysebedingungen (bis 226.6° C, 2.0 h) nicht ineinander umwandeln 2° , werden bei der Isomerisierung von 1a gebildet: $2a/2b = 1.12^{\pm}0.02/0.88^{\pm}0.02^{-16}$. Unter den Produkten überwiegt 2a, formal Resultat einer 1.3-sigmatropen Verschiebung, um einen Faktor ~ 1.3 (bestimmt durch Analyse der C_8 -Protonensignale 7° b) im $1_{H-NMR-Spektrum}$ von 2° c). Das Produktverhaltnis 17° crwies sich als unabhangig von der Reaktionszeit und zeigte keine wesentlich über die Fehlergrenze hinausgehende Temperaturabhangigkeit. Um das alleinige Wirken eines im produktbestimmenden Schritt zwischen 2a und 2b diskriminierenden Isotopie-Effektes auszuschließen, analysierten wir ebenfalls das aus der Umlagerung von 1b resultierende Gemisch von 2. Hier überwiegt 2b um einen Faktor ~ 1.5 : $2a/2b = 0.79^{\pm}0.01/1.21^{\pm}0.01^{-16}$). Das Produktverhaltnis ist wiederum unabhangig von der Reaktionszeit und weist, wenn überhaupt, nur einen minimalen Temperaturgradienten auf.

No 39 3741

Die thermische Umlagerung $\underline{1} \rightarrow \underline{2}$ laßt sich zwanglos durch die Beteiligung des resonanzstabilisierten Bisallyl-Diradikals $\underline{4}$ deuten, das jedoch nicht vollstandig aquilibriert. Bei der Automerisierung von $\underline{2}$, die erst ab 260° C erfolgt, wiesen wir das Diradikal $\underline{4}$ als Zwischenstufe nach $\underline{2}$). Potentielle Orbital-Symmetrie-kontrollierte $\underline{18},19$) Prozesse werden bei der Isomerisierung von $\underline{1}$ energetisch $\underline{20}$) unterlauten. Zur Bildung der Produkte ist sowohl Rotation um die $\underline{C_6}$ - $\underline{C_7}$ -ais auch $\underline{C_5}$ - $\underline{C_6}$ -Bindung in $\underline{1}$ erforderlich. Eine Drehung um die $\underline{C_6}$ - $\underline{C_7}$ -Bindung im oder gegen den Uhrzeigersinn laßt jeweils eine Unterstutzung des Bindungsbruchs durch den anwachsenden Beitrag der Allylstabilisierung der

 ${
m C_7C_6C_8}$ -Einheit zum Zuge kommen und fuhrt zu $\underline{4}$. Obwohl der Beitrag von Rotations-Barrieren zu den Energien der produktbildenden Übergangszustande nicht bekannt ist, kann er als ein kleiner aber maßgeblicher Faktor für die Umlagerungen von $\underline{1}$ angesehen werden ${
m ^{1a})21}$). Bildung von $\underline{2}\underline{a}$ aus $\underline{4}\underline{a}$ (${
m ^{2}-D_{2}}$)

verlangt unter anderem einen Rotationswinkel von ca. 80° um die C_5 - C_6 -Achse, 2b einen Winkel von wenigstens 100° . Der großere Rotationswinkel und nichtbindende Wechselwirkungen zwischen C_4 , endo-H und C_8 , Z-H(D) erklaren die etwas geringere Bildungstendenz der Produkte 2b aus 1a bzw. 2a aus 1b.

Die degenerierte Methylencyclobutan-Umlägerung von $\underline{1}$ verlangt vor dem Ringschluß mindestens eine komplette Drehung von 180° um die C_5 - C_6 -Bindung. Bevor der Übergangszustand zur Bildung der neuen σ -Bindung aus dem nahezu spannungsfreien Diradikal $\underline{4}$ (ungeachtet der verbleibenden Funfringspannung) erreicht wird, muß neben der Aufhebung der Allylresonanz der großte Teil der Vierringspannung wieder aufgebracht werden, was einer Spannungs-Barriere bezuglich des Ringschlusses des stabilisierten Diradikals gleichkommt 2^{1}). Der Einfluß der hier angedeuteten Faktoren spiegelt sich experimentell in den erniedrigten Reaktionsgeschwindigkeitskonstanten 13° , der leicht erhohten Aktivierungsenergie und der weniger positiven Aktivierungsentropie (Tabelle 1) für die Automerisierung von $\underline{1}$ wieder.

Modellbetrachtungen schließen in diesem starren System die Beteiligung einer konzertierten Cope-Umlagerung weitgehend aus. Das zufallige Zusammenwirken sowohl der Orbital-Symmetrie-kontrollierten [1.3]- als auch der [3.3]-sig- matropen Verschiebung in nahezu gleichem Verhaltnis ware eine, wenn auch hochst unwahrscheinliche, Deutungsmoglichkeit der experimentellen Befunde 1a). Schriebe man den Anteil $\underline{2b}$ aus $\underline{1a}$ bzw. $\underline{2a}$ aus $\underline{1b}$ einem um die C_5 - C_6 -Bindung frei rotierenden Diradikal vom Typ $\underline{4}$ zu (ungeachtet des sek. Isotopie-Effektes), dann konnte im Falle von $\underline{1a}$ nur ca. 12 % bzw. von $\underline{1b}$ nur ca. 21 % der Produkte $\underline{2}$ über eine synchrone [1.3]-Umlagerung entstanden sein, was einer Destabilisierung eines Orbital-Symmetrie-kontrollierten Übergangszustandes 18) gegenüber dem diradikalischen um 1.3 bzw. 1.9 kcal/mol entspricht 25).

Herrn Professor W.Kirmse und Herrn Professor W.R.Roth danke ich herzlich fur viele Anregungen.

LITERATUR

- 1) (a) W.v.E.Doering und L.Birladeanu, Tetrahedron 29,499 (1973); (b) J.E. Baldwin und R.H.Fleming, J.Amer.Chem.Soc. 94,2140 (1970); (c) J.J.Ga-jewski und C.N.Shih, Ibid. 94,1675 (1972); und dort zitierte Literatur.
- 2) D. Hasselmann, Tetrahedron Lett. 3465 (1972);
- 3) Von den hier beschriebenen Verbindungen liegen ¹H-NMR-, IR- und Massenspektren vor, die im Einklang mit den angegebenen Strukturen stehen.
- 4) L.Ghosez et al., Tetrahedron 27,615 (1971);
- 5) s.a. T.B.Malloy, Jr., R.M. Hedges und F. Fisher, J. Org. Chem. 35,4256 (1970);
- 6) Das am C_5 eingebaute Deuterium verblieb auf Grund der 1 H-NMR-Analysen der Thermolyseprodukte vollstandig an dieser Position bzw. fand sich ausschließlich am C_4 in 2a und 2b wieder.
- 7) (a) Varian A 60 D, CCl₄, TMS als innerer Standard, Verschiebungen in ppm auf der 6-Skala. (b) Deuteriumverteilungen wurden jeweils aus zwei an verschiedenen Tagen gemessenen Satzen von mindestens 10 Integralen ermittelt.
- 8) S. Winstein, E.C. Friedrich, R. Baker und Y. Lin, Tetrahedron 1966, Suppl. 8,621;
- 9) Modifikation von F.Bertini et al., Tetrahedron 26, 1281 (1970);
- 10) Thermolysen wurden in einem 20-1-Pyrex-Rundkolben in einem Luftthermostaten mit einer Temperaturkonstanz besser 0.1°C bei ca. 1 Torr ausgeführt.
- 11) Nach 2.0 h bei 226.3°C (langste Zeit, höchste Temperatur) findet man neben 1 und 2 max. 0.8 % nicht aufgeklarter Produkte mit langerer Retentionszeit.
- 12) J.C.Gilbert und R.Dana fanden ≤200°C keine Umlagerung 1a→1b, aber 1a→2a+2b, Wir danken Prof.J.C.Gilbert für diese private Mitteilung.
- 13) $\underline{1}\underline{b} \rightarrow \underline{1}\underline{a}$ konnte nicht bis zu hoheren Umsatzen verfolgt werden, da $\underline{1} \rightarrow \underline{2}$ im beob achteten Temperaturbereich 7.5 bis 8.1 mal schneller ablauft.
- 14) Die Reaktion erwies sich als unkatalysiert und intramolekular (weder Deuterium-Disproportionierung noch Verlust; MS bei 11 bis 12 eV).
- 15) Die energetischen Parameter wurden nach einem Programm der "kleinsten Fehlerquadrate" unter Vernachlassigung des sek. Isotopie-Effektes berechnet.
- 16) korrigiert auf 2.00 Atome Deuterium pro Molekül;
- 17) Das Produktverhaltnis von 2 wird durch die Automerisierung von 1 bis 15 % Umlagerung nicht über die Fehlergrenze hinaus beeinflußt.
- 18) R.B. Woodward und R. Hoffmann, Angew. Chem. 81, 797 (1969);
- 19) J.A.Berson und L.Salem, J.Amer.Chem.Soc. 94, 8917 (1972);
- 20) Eine detaillierte Diskussion der energetischen Faktoren und der beteiligten sek. Isotopie-Effekte erfolgt in einer ausfuhrlichen Publikation.
- 21) W.v.E.Doering, M.Franck-Neumann, D. Hasselmann, R.L. Kaye, Ibid. 94, 3833 (1972);
- 22) J.A.Berson und P.B.Dervan, Ibid. 94, 8949 (1972);
- 23) Versuche zur Stereochemie des wandernden Kohlenstoffs C_7 in 1 sind in Arbeit